Package 'Carlson'

Title: Carlson Elliptic Integrals and Incomplete Elliptic Integrals
Description: Evaluation of the Carlson elliptic integrals and the incomplete elliptic integrals with complex arguments. The implementations use Carlson's algorithms <doi:10.1007/BF02198293>. Applications of elliptic integrals include probability distributions, geometry, physics, mechanics, electrodynamics, statistical mechanics, astronomy, geodesy, geodesics on conics, and magnetic field calculations.
Authors: Stéphane Laurent
Maintainer: Stéphane Laurent <[email protected]>
License: GPL-3
Version: 3.0.0
Built: 2024-11-04 02:47:31 UTC
Source: https://github.com/stla/carlson

Help Index


Carlson elliptic integral RC

Description

Evaluate the Carlson elliptic integral RC.

Usage

Carlson_RC(x, y, minerror = 1e-15)

Arguments

x, y

real or complex numbers, with y different from 0

minerror

bound on the relative error passed to Carlson_RF

Value

A complex number, the value of the Carlson elliptic integral RC(x,y).

Note

The function returns a value when x or y are negative real numbers, but this value is not the one of the Carlson integral.

Examples

Carlson_RC(5, 2)
gsl::ellint_RC(5, 2)

Carlson elliptic integral RD

Description

Evaluate the Carlson elliptic integral RD.

Usage

Carlson_RD(x, y, z, minerror = 1e-15)

Arguments

x, y, z

real or complex numbers; at most one can be 0

minerror

bound on the relative error

Value

A complex number, the value of the Carlson elliptic integral RD(x,y,z).

Note

The function returns a value when x, y or z are negative real numbers, but this value is not the one of the Carlson integral.

Examples

Carlson_RD(5, 2, 3)
gsl::ellint_RD(5, 2, 3)

Carlson elliptic integral RF

Description

Evaluate the Carlson elliptic integral RF.

Usage

Carlson_RF(x, y, z, minerror = 1e-15)

Arguments

x, y, z

real or complex numbers; at most one can be 0

minerror

bound on relative error

Value

A complex number, the value of the Carlson elliptic integral RF(x,y,z).

Note

The function returns a value when x, y or z are negative real numbers, but this value is not the one of the Carlson integral.

Examples

Carlson_RF(5, 2, 3)
gsl::ellint_RF(5, 2, 3)

Carlson elliptic integral RG

Description

Evaluate the Carlson elliptic integral RG.

Usage

Carlson_RG(x, y, z, minerror = 1e-15)

Arguments

x, y, z

real or complex numbers; they can be zero

minerror

bound on the relative error passed to Carlson_RF and Carlson_RD

Value

A complex number, the value of the Carlson elliptic integral RG(x,y,z).


Carlson elliptic integral RJ

Description

Evaluate the Carlson elliptic integral RJ.

Usage

Carlson_RJ(x, y, z, p, minerror = 1e-15)

Arguments

x, y, z, p

real or complex numbers; at most one can be 0

minerror

bound on the relative error

Value

A complex number, the value of the Carlson elliptic integral RJ(x,y,z,t).

Note

The function returns a value when x, y, z or p are negative real numbers, but this value is not the one of the Carlson integral.

Examples

Carlson_RJ(5, 2, 3, 4)
gsl::ellint_RJ(5, 2, 3, 4)

Incomplete elliptic integral of the second kind

Description

Evaluate the incomplete elliptic integral of the second kind.

Usage

elliptic_E(phi, m, minerror = 1e-15)

Arguments

phi

amplitude, real or complex number/vector

m

parameter, real or complex number/vector

minerror

the bound on the relative error passed to Carlson_RF and Carlson_RD

Value

A complex number or vector, the value(s) of the incomplete elliptic integral E(φ,m).

Examples

elliptic_E(1, 0.2)
gsl::ellint_E(1, sqrt(0.2))

Incomplete elliptic integral of the first kind

Description

Evaluate the incomplete elliptic integral of the first kind.

Usage

elliptic_F(phi, m, minerror = 1e-15)

Arguments

phi

amplitude, real or complex number/vector

m

parameter, real or complex number/vectot

minerror

the bound on the relative error passed to Carlson_RF

Value

A complex number or vector, the value(s) of the incomplete elliptic integral F(φ,m).

Examples

elliptic_F(1, 0.2)
gsl::ellint_F(1, sqrt(0.2))

Incomplete elliptic integral of the third kind

Description

Evaluate the incomplete elliptic integral of the third kind.

Usage

elliptic_PI(phi, n, m, minerror = 1e-15)

Arguments

phi

amplitude, real or complex number/vector

n

characteristic, real or complex number/vector

m

parameter, real or complex number/vector

minerror

the bound on the relative error passed to Carlson_RF and Carlson_RJ

Value

A complex number or vector, the value(s) of the incomplete elliptic integral Π(φ,n,m).

Examples

elliptic_PI(1, 0.8, 0.2)
gsl::ellint_P(1, sqrt(0.2), -0.8)

Jacobi zeta function

Description

Evaluate the Jacobi zeta function.

Usage

elliptic_Z(phi, m, minerror = 1e-15)

Arguments

phi

amplitude, real or complex number/vector

m

parameter, real or complex number/vector

minerror

bound on relative error passed to elliptic_E and elliptic_F

Value

A complex number or vector, the value(s) of the Jacobi zeta function Z(φ,m).


Heuman Lambda function

Description

Evaluates the Heuman Lambda function.

Usage

Lambda0(phi, m, minerror = 1e-14)

Arguments

phi

Jacobi amplitude, a complex number/vector

m

parameter, a complex number/vector

minerror

the bound on the relative error passed to elliptic_F and elliptic_Z

Value

A complex number or vector.