--- title: "Hypergeometric function of a matrix argument" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Hypergeometric function of a matrix argument} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(HypergeoMat) ``` Let $(a_1, \ldots, a_p)$ and $(b_1, \ldots, b_q)$ be two vectors of real or complex numbers, possibly empty, $\alpha > 0$ and $X$ a real symmetric or a complex Hermitian matrix. The corresponding *hypergeometric function of a matrix argument* is defined by $$ {}_pF_q^{(\alpha)} \left(\begin{matrix} a_1, \ldots, a_p \\ b_1, \ldots, b_q\end{matrix}; X\right) = \sum_{k=0}^\infty\sum_{\kappa \vdash k} \frac{{(a_1)}_\kappa^{(\alpha)} \cdots {(a_p)}_\kappa^{(\alpha)}} {{(b_1)}_\kappa^{(\alpha)} \cdots {(b_q)}_\kappa^{(\alpha)}} \frac{C_\kappa^{(\alpha)}(X)}{k!}. $$ The inner sum is over the integer partitions $\kappa$ of $k$ (which we also denote by $|\kappa| = k$). The symbol ${(\cdot)}_\kappa^{(\alpha)}$ is the *generalized Pochhammer symbol*, defined by $$ {(c)}_\kappa^{(\alpha)} = \prod_{i=1}^\ell\prod_{j=1}^{\kappa_i} \left(c - \frac{i-1}{\alpha} + j-1\right) $$ when $\kappa = (\kappa_1, \ldots, \kappa_\ell)$. Finally, $C_\kappa^{(\alpha)}$ is a *Jack function*. Given an integer partition $\kappa$ and $\alpha > 0$, and a real symmetric or complex Hermitian matrix $X$ of order $n$, the Jack function $$ C_\kappa^{(\alpha)}(X) = C_\kappa^{(\alpha)}(x_1, \ldots, x_n) $$ is a symmetric homogeneous polynomial of degree $|\kappa|$ in the eigenvalues $x_1$, $\ldots$, $x_n$ of $X$. The series defining the hypergeometric function does not always converge. See the references for a discussion about the convergence. The inner sum in the definition of the hypergeometric function is over all partitions $\kappa \vdash k$ but actually $C_\kappa^{(\alpha)}(X) = 0$ when $\ell(\kappa)$, the number of non-zero entries of $\kappa$, is strictly greater than $n$. For $\alpha=1$, $C_\kappa^{(\alpha)}$ is a *Schur polynomial* and it is a *zonal polynomial* for $\alpha = 2$. In random matrix theory, the hypergeometric function appears for $\alpha=2$ and $\alpha$ is omitted from the notation, implicitely assumed to be $2$. This is the default value of $\alpha$ in the `HypergeoMat` package. Koev and Eldeman (2006) provided an efficient algorithm for the evaluation of the truncated series $$ {{}_{p\!\!\!\!\!}}^m\! F_q^{(\alpha)} \left(\begin{matrix} a_1, \ldots, a_p \\ b_1, \ldots, b_q\end{matrix}; X\right) = \sum_{k=0}^m\sum_{\kappa \vdash k} \frac{{(a_1)}_\kappa^{(\alpha)} \cdots {(a_p)}_\kappa^{(\alpha)}} {{(b_1)}_\kappa^{(\alpha)} \cdots {(b_q)}_\kappa^{(\alpha)}} \frac{C_\kappa^{(\alpha)}(X)}{k!}. $$ In the `HypergeoMat` package, $m$ is called the *truncation weight of the summation* (because $|\kappa|$ is called the weight of $\kappa$), the vector $(a_1, \ldots, a_p)$ is called the vector of *upper parameters* while the vector $(b_1, \ldots, b_q)$ is called the vector of *lower parameters*. The user can enter either the matrix $X$ or the vector $(x_1, \ldots, x_n)$ of the eigenvalues of $X$. For example, to compute $$ {{}_{2\!\!\!\!\!}}^{15}\! F_3^{(2)} \left(\begin{matrix} 3, 4 \\ 5, 6, 7\end{matrix}; \begin{pmatrix} 0.1 && 0.4 \\ 0.4 && 0.1 \end{pmatrix}\right) $$ you have to enter (recall that $\alpha=2$ is the default value) ```{r} hypergeomPFQ(m = 15, a = c(3,4), b = c(5,6,7), x = cbind(c(0.1,0.4),c(0.4,0.1))) ``` We said that the hypergeometric function is defined for a real symmetric matrix or a complex Hermitian matrix $X$. However we do not impose this restriction in the `HypergeoMat` package. The user can enter any real or complex square matrix, or a real or complex vector of eigenvalues. # References - Plamen Koev and Alan Edelman. *The Efficient Evaluation of the Hypergeometric Function of a Matrix Argument*. Mathematics of Computation, 75, 833-846, 2006. - Robb Muirhead. *Aspects of multivariate statistical theory*. Wiley series in probability and mathematical statistics. Probability and mathematical statistics. John Wiley & Sons, New York, 1982. - A. K. Gupta and D. K. Nagar. *Matrix variate distributions*. Chapman and Hall, 1999.