Package 'HypergeoMat'

Title: Hypergeometric Function of a Matrix Argument
Description: Evaluates the hypergeometric functions of a matrix argument, which appear in random matrix theory. This is an implementation of Koev & Edelman's algorithm (2006) <doi:10.1090/S0025-5718-06-01824-2>.
Authors: Stéphane Laurent
Maintainer: Stéphane Laurent <[email protected]>
License: GPL-3
Version: 4.0.3
Built: 2024-10-27 04:56:24 UTC
Source: https://github.com/stla/hypergeomat

Help Index


Type one Bessel function of Herz

Description

Evaluates the type one Bessel function of Herz.

Usage

BesselA(m, x, nu)

Arguments

m

truncation weight of the summation, a positive integer

x

either a real or complex square matrix, or a numeric or complex vector, the eigenvalues of the matrix

nu

the order parameter, real or complex number with Re(nu)>-1

Value

A real or complex number.

Note

This function is usually defined for a symmetric real matrix or a Hermitian complex matrix.

References

A. K. Gupta and D. K. Nagar. Matrix variate distributions. Chapman and Hall, 1999.

Examples

# for a scalar x, the relation with the Bessel J-function:
t <- 2
nu <- 3
besselJ(t, nu)
BesselA(m=15, t^2/4, nu) * (t/2)^nu
# it also holds for a complex variable:
if(require("Bessel")) {
  t <- 1 + 2i
  Bessel::BesselJ(t, nu)
  BesselA(m=15, t^2/4, nu) * (t/2)^nu
}

Hypergeometric function of a matrix argument

Description

Evaluates a truncated hypergeometric function of a matrix argument.

Usage

hypergeomPFQ(m, a, b, x, alpha = 2)

Arguments

m

truncation weight of the summation, a positive integer

a

the "upper" parameters, a numeric or complex vector, possibly empty (or NULL)

b

the "lower" parameters, a numeric or complex vector, possibly empty (or NULL)

x

either a real or complex square matrix, or a numeric or complex vector, the eigenvalues of the matrix

alpha

the alpha parameter, a positive number

Details

This is an implementation of Koev & Edelman's algorithm (see the reference). This algorithm is split into two parts: the case of a scalar matrix (multiple of an identity matrix) and the general case. The case of a scalar matrix is much faster (try e.g. x = c(1,1,1) vs x = c(1,1,0.999)).

Value

A real or a complex number.

Note

The hypergeometric function of a matrix argument is usually defined for a symmetric real matrix or a Hermitian complex matrix.

References

Plamen Koev and Alan Edelman. The Efficient Evaluation of the Hypergeometric Function of a Matrix Argument. Mathematics of Computation, 75, 833-846, 2006.

Examples

# a scalar x example, the Gauss hypergeometric function
hypergeomPFQ(m = 10, a = c(1,2), b = c(3), x = 0.2)
gsl::hyperg_2F1(1, 2, 3, 0.2)
# 0F0 is the exponential of the trace
X <- toeplitz(c(3,2,1))/10
hypergeomPFQ(m = 10, a = NULL, b = NULL, x = X)
exp(sum(diag(X)))
# 1F0 is det(I-X)^(-a)
X <- toeplitz(c(3,2,1))/100
hypergeomPFQ(m = 10, a = 3, b = NULL, x = X)
det(diag(3)-X)^(-3)
# Herz's relation for 1F1
hypergeomPFQ(m = 10, a = 2, b = 3, x = X)
exp(sum(diag(X))) * hypergeomPFQ(m = 10, a = 3-2, b = 3, x = -X)
# Herz's relation for 2F1
hypergeomPFQ(10, a = c(1,2), b = 3, x = X)
det(diag(3)-X)^(-2) *
  hypergeomPFQ(10, a = c(3-1,2), b = 3, -X %*% solve(diag(3)-X))

Evaluation with Julia

Description

Evaluate the hypergeometric function of a matrix argument with Julia. This is highly faster.

Usage

hypergeomPFQ_julia()

Value

A function with the same arguments as hypergeomPFQ.

Note

See JuliaConnectoR-package for information about setting up Julia. If you want to directly use Julia, you can use my package.

Examples

library(HypergeoMat)
if(JuliaConnectoR::juliaSetupOk()){
  jhpq <- hypergeomPFQ_julia()
  jhpq(30, c(1+1i, 2, 3), c(4, 5), c(0.1, 0.2, 0.3+0.3i))
  JuliaConnectoR::stopJulia()
}

Incomplete Beta function of a matrix argument

Description

Evaluates the incomplete Beta function of a matrix argument.

Usage

IncBeta(m, a, b, x)

Arguments

m

truncation weight of the summation, a positive integer

a, b

real or complex parameters with Re(a)>(p-1)/2 and Re(b)>(p-1)/2, where p is the dimension (the order of the matrix)

x

either a real positive symmetric matrix or a complex positive Hermitian matrix "smaller" than the identity matrix (i.e. I-x is positive), or a numeric or complex vector, the eigenvalues of the matrix

Value

A real or a complex number.

Note

The eigenvalues of a real symmetric matrix or a complex Hermitian matrix are always real numbers, and moreover they are positive under the constraints on x. However we allow to input a numeric or complex vector x because the definition of the function makes sense for such a x.

References

A. K. Gupta and D. K. Nagar. Matrix variate distributions. Chapman and Hall, 1999.

Examples

# for a scalar x, this is the incomplete Beta function:
a <- 2; b <- 3
x <- 0.75
IncBeta(m = 15, a, b, x)
gsl::beta_inc(a, b, x)
pbeta(x, a, b)

Incomplete Gamma function of a matrix argument

Description

Evaluates the incomplete Gamma function of a matrix argument.

Usage

IncGamma(m, a, x)

Arguments

m

truncation weight of the summation, a positive integer

a

real or complex parameter with Re(a)>(p-1)/2, where p is the dimension (the order of the matrix)

x

either a real or complex square matrix, or a numeric or complex vector, the eigenvalues of the matrix

Value

A real or complex number.

Note

This function is usually defined for a symmetric real matrix or a Hermitian complex matrix.

References

A. K. Gupta and D. K. Nagar. Matrix variate distributions. Chapman and Hall, 1999.

Examples

# for a scalar x, this is the incomplete Gamma function:
a <- 2
x <- 1.5
IncGamma(m = 15, a, x)
gsl::gamma_inc_P(a, x)
pgamma(x, shape = a, rate = 1)

Multivariate Beta function (of complex variable)

Description

The multivariate Beta function (mvbeta) and its logarithm (lmvbeta).

Usage

lmvbeta(a, b, p)

mvbeta(a, b, p)

Arguments

a, b

real or complex numbers with Re(a)>0 and Re(b)>0

p

a positive integer, the dimension

Value

A real or a complex number.

Examples

a <- 5; b <- 4; p <- 3
mvbeta(a, b, p)
mvgamma(a, p) * mvgamma(b, p) / mvgamma(a+b, p)

Multivariate Gamma function (of complex variable)

Description

The multivariate Gamma function (mvgamma) and its logarithm (lmvgamma).

Usage

lmvgamma(x, p)

mvgamma(x, p)

Arguments

x

a real or a complex number; Re(x)>0 for lmvgamma and x must not be a negative integer for mvgamma

p

a positive integer, the dimension

Value

A real or a complex number.

Examples

x <- 5
mvgamma(x, p = 2)
sqrt(pi)*gamma(x)*gamma(x-1/2)