Package: cyclotomic 1.3.0

Stéphane Laurent

cyclotomic: The Field of Cyclotomic Numbers

The cyclotomic numbers are complex numbers that can be thought of as the rational numbers extended with the roots of unity. They are represented exactly, enabling exact computations. They contain the Gaussian rationals (complex numbers with rational real and imaginary parts) as well as the square roots of all rational numbers. They also contain the sine and cosine of all rational multiples of pi. The algorithms implemented in this package are taken from the 'Haskell' package 'cyclotomic', whose algorithms are adapted from code by Martin Schoenert and Thomas Breuer in the 'GAP' project (<https://www.gap-system.org/>). Cyclotomic numbers have applications in number theory, algebraic geometry, algebraic number theory, coding theory, and in the theory of graphs and combinatorics. They have connections to the theory of modular functions and modular curves.

Authors:Stéphane Laurent [aut, cre], Scott N. Walck [cph]

cyclotomic_1.3.0.tar.gz
cyclotomic_1.3.0.zip(r-4.5)cyclotomic_1.3.0.zip(r-4.4)cyclotomic_1.3.0.zip(r-4.3)
cyclotomic_1.3.0.tgz(r-4.4-any)cyclotomic_1.3.0.tgz(r-4.3-any)
cyclotomic_1.3.0.tar.gz(r-4.5-noble)cyclotomic_1.3.0.tar.gz(r-4.4-noble)
cyclotomic_1.3.0.tgz(r-4.4-emscripten)cyclotomic_1.3.0.tgz(r-4.3-emscripten)
cyclotomic.pdf |cyclotomic.html
cyclotomic/json (API)
NEWS

# Install 'cyclotomic' in R:
install.packages('cyclotomic', repos = c('https://stla.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/stla/cyclotomic/issues

On CRAN:

arithmeticcyclotomic-numbers

2.70 score 9 scripts 209 downloads 19 exports 13 dependencies

Last updated 1 years agofrom:66c1ec2352. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winOKNov 01 2024
R-4.5-linuxOKNov 01 2024
R-4.4-winOKNov 01 2024
R-4.4-macOKNov 01 2024
R-4.3-winOKNov 01 2024
R-4.3-macOKNov 01 2024

Exports:as.cyclotomicasComplexconjugatecosDegcosRevcycSqrtfrom_justimaginaryPartisGaussianRationalisRationalisRealmaybeRationalpolarDegpolarRevquadraticRootsrealPartsinDegsinRevzeta

Dependencies:BHcachemfastmapgmpintmapmagrittrmaybememoisenumbersR6RcpprlangVeryLargeIntegers

Readme and manuals

Help Manual

Help pageTopics
Coercion to a 'cyclotomic' objectas.cyclotomic as.cyclotomic,bigq-method as.cyclotomic,bigz-method as.cyclotomic,character-method as.cyclotomic,cyclotomic-method as.cyclotomic,numeric-method
Convert cyclotomic number to complex numberasComplex
Conjugate cyclotomic numberconjugate
Extract value from a 'Just' valuecyclotomic-imports from_just
Unary operators for cyclotomic objects+,cyclotomic,missing-method -,cyclotomic,missing-method cyclotomic-unary
Square root as a cyclotomic numbercycSqrt
Imaginary part of cyclotomic number.imaginaryPart
Is the cyclotomic a Gaussian rational?isGaussianRational
Is the cyclotomic a rational number?isRational
Is the cyclotomic a real number?isReal
Cyclotomic as exact rational number if possiblemaybeRational
Polar complex number with rational magnitude and anglepolar polarDeg polarRev
Roots of quadratic polynomialquadraticRoots
Real part of cyclotomic number.realPart
Cosine and sine of a rational numbercosDeg cosRev sinDeg sinRev trigonometry
The primitive n-th root of unity.zeta