
Package: graph3d (via r-universe)
October 22, 2024

Type Package

Title A Wrapper of the JavaScript Library 'vis-graph3d'

Version 0.2.0

Date 2020-11-12

Maintainer Stéphane Laurent <laurent_step@outlook.fr>

Description Create interactive visualization charts to draw data in
three dimensional graphs. The graphs can be included in Shiny
apps and R markdown documents, or viewed from the R console and
'RStudio' Viewer. Based on the 'vis.js' Graph3d module and the
'htmlwidgets' R package.

License GPL-3

Imports htmlwidgets, lazyeval

Suggests shiny, viridisLite

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

URL https://github.com/stla/graph3d

BugReports https://github.com/stla/graph3d/issues

Repository https://stla.r-universe.dev

RemoteUrl https://github.com/stla/graph3d

RemoteRef HEAD

RemoteSha 9dbd68533b190ae405168bde44dff1ccf0ba9b70

Contents
graph3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
graph3d-imports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
graph3d-shiny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Index 10

1

https://github.com/stla/graph3d
https://github.com/stla/graph3d/issues


2 graph3d

graph3d 3D chart

Description

Generate an interactive 3D chart.

Usage

graph3d(
data = NULL,
x = ~x,
y = ~y,
z = ~z,
frame = NULL,
style = NULL,
type = "surface",
surfaceColors = c("#FF0000", "#FFF000", "#00FF00", "#68E8FB", "#000FFF"),
dataColor = NULL,
xBarWidth = NULL,
yBarWidth = NULL,
xlab = NULL,
ylab = NULL,
zlab = NULL,
xValueLabel = NULL,
yValueLabel = NULL,
zValueLabel = NULL,
width = "100%",
height = "100%",
backgroundColor = NULL,
showPerspective = TRUE,
showGrid = TRUE,
showShadow = FALSE,
showXAxis = TRUE,
showYAxis = TRUE,
showZAxis = TRUE,
axisColor = NULL,
axisFontSize = 30,
gridColor = NULL,
keepAspectRatio = TRUE,
verticalRatio = 0.5,
tooltip = TRUE,
tooltipDelay = NULL,
tooltipStyle = NULL,
showLegend = TRUE,
legendLabel = NULL,
cameraPosition = list(horizontal = 1, vertical = 0.5, distance = 2.8),



graph3d 3

xCenter = NULL,
yCenter = NULL,
xMin = NULL,
xMax = NULL,
yMin = NULL,
yMax = NULL,
zMin = NULL,
zMax = NULL,
xStep = NULL,
yStep = NULL,
zStep = NULL,
showAnimationControls = TRUE,
animationInterval = 100,
animationPreload = TRUE,
frameLabel = NULL,
onclick = NULL,
elementId = NULL

)

Arguments

data dataframe containing the data for the chart; if not NULL, the variables passed to
x, y, z, frame and style are searched among the columns of data

x a right-sided formula giving the variable for the locations of the points on the
x-axis; required

y a right-sided formula giving the variable for the locations of the points on the
y-axis; required

z a right-sided formula giving the variable for the locations of the points on the
z-axis; required

frame a right-sided formula giving the variable for the frames of the animation; op-
tional

style a right-sided formula required for type="dot-color" and type="dot-size";
the variable given by this formula can be a numeric vector for the data value
appearing in the legend, or a list of style properties; see the examples

type the type of the chart, one of "bar", "bar-color", "bar-size", "dot", "dot-line",
"dot-color", "dot-size", "line", "grid", or "surface"

surfaceColors a vector of colors for type="surface", or a list of the form list(hue = list(start=-360,
end=360, saturation=50, brightness=100, colorStops=8)); see the vis-
graph3d documentation for more information

dataColor a string or a list; see the type="line" example and the vis-graph3d documen-
tation

xBarWidth, yBarWidth
the widths of bars in x and y directions for type="bar" and type="bar-color";
by default, the width is equal to the smallest distance between the data points

xlab string, the label on the x-axis

ylab string, the label on the y-axis



4 graph3d

zlab string, the label on the z-axis

xValueLabel JavaScript function for custom formatting of the labels along the x-axis, for
example JS("function(x){return (x * 100) + '%'}")

yValueLabel same as xValueLabel for the y-axis

zValueLabel same as xValueLabel for the z-axis

width, height the dimensions of the chart given as strings, in pixels (e.g. "400px") or percent-
ages (e.g. "80%")

backgroundColor

the background color of the chart, either a string giving a HTML color (like
"red" or "#00CC00"), or a list of the form list(fill="black", stroke="yellow",
strokeWidth=3); fill is the chart fill color, stroke is the color of the chart
border, and strokeWidth is the border width in pixels

showPerspective

logical; if TRUE, the graph is drawn in perspective: points and lines which are
further away are drawn smaller

showGrid logical; if TRUE, grid lines are drawn in the x-y surface

showShadow logical, whether to show shadow on the graph

showXAxis logical; if TRUE, x-axis and x-axis labels are drawn

showYAxis logical; if TRUE, y-axis and y-axis labels are drawn

showZAxis logical; if TRUE, z-axis and z-axis labels are drawn

axisColor a HTML color given as a string, the color of the axis lines and the text along the
axes

axisFontSize a positive number, the font size of the axes labels

gridColor a HTML color given as a string, the color of the grid lines
keepAspectRatio

logical; if TRUE, the x-axis and the y-axis keep their aspect ratio; if FALSE, the
axes are scaled such that they both have the same, maximum width

verticalRatio value between 0.1 and 1 which scales the vertical size of the graph; when
keepAspectRatio=FALSE and verticalRatio=1, the graph will be a cube

tooltip logical, whether to see the tooltips, or a JavaScript function to customize the
tooltips; see the barplot example

tooltipDelay a number, the delay time in ms for the tooltip to appear when the mouse cursor
hovers over an x-y grid tile

tooltipStyle a list of tooltip style properties; see the vis-graph3d documentation

showLegend logical, whether to see the legend if the graph type supports it

legendLabel a string, the label of the legend

cameraPosition a list with three fields to set the initial rotation and position if the camera:
horizontal, a value in radians, vertical, a value in radians between 0 and
pi/2, and distance, the distance between 0.71 and 5 from the camera to the
center of the graph

xCenter a string giving the horizontal center position of the graph as a percentage (like
"50%") or in pixels (like "100px"); default to "55%"



graph3d 5

yCenter same as xCenter for the vertical center position of the graph; default to "45%"

xMin minimum value for the x-axis; if not set, the smallest value of x is used

xMax maximum value for the x-axis; if not set, the largest value of x is used

yMin minimum value for the y-axis; if not set, the smallest value of y is used

yMax maximum value for the y-axis; if not set, the largest value of y is used

zMin minimum value for the z-axis; if not set, the smallest value of z is used

zMax maximum value for the z-axis; if not set, the largest value of z is used

xStep a number, the step size for the grid on the x-axis

yStep a number, the step size for the grid on the y-axis

zStep a number, the step size for the grid on the z-axis
showAnimationControls

logical, only applicable when the graph contains an animation (i.e. frame is
not NULL), whether to show the animation controls (buttons previous, start/stop,
next, and a slider)

animationInterval

a number, the animation interval in milliseconds; default to 1000
animationPreload

logical; if FALSE, the animation frames are loaded as soon as they are requested;
if TRUE, the animation frames are automatically loaded in the background

frameLabel string, the label for the animation slider

onclick a JavaScript function to handle the click event on a point; see the vis-graph3d
documentation and the second example in graph3d-shiny

elementId an id for the widget

Details

See the vis-graph3d documentation.

Examples

# 3d bar plot ####
dat <- data.frame(x = c(1,1,2,2), y = c(1,2,1,2), z = c(1,2,3,4))
graph3d(dat, type = "bar", zMin = 0)
# change bar widths
graph3d(dat, type = "bar", zMin = 0, xBarWidth = 0.3, yBarWidth = 0.3)
# with custom tooltips
graph3d(dat, type = "bar", zMin = 0,

tooltip = JS(c("function(xyz){",
" var x = 'X: ' + xyz.x.toFixed(2);",
" var y = 'Y: ' + xyz.y.toFixed(2);",
" var z = 'Z: ' + xyz.z.toFixed(2);",
" return x + '<br/>' + y + '<br/>' + z;",
"}"))

)

# bivariate Gaussian density ####

https://visjs.github.io/vis-graph3d/docs/graph3d/index.html#Configuration_Options


6 graph3d-imports

dat <- expand.grid(
x = seq(-4,4,length.out=100),
y = seq(-4,4,length.out=100)

)
dat <- transform(dat, density = dnorm(x)*dnorm(y))
graph3d(dat, z = ~density, keepAspectRatio = FALSE, verticalRatio = 1)

# animation ####
f <- function(x, y) sin(x/50) * cos(y/50) * 50 + 50
t_ <- seq(0, 2*pi, length.out = 90)[-90]
x_ <- y_ <- seq(0, 314, length.out = 50)
dat <- expand.grid(x = x_, y = y_, t = t_)
dat <- transform(dat, z = f(x*cos(t) - y*sin(t), x*sin(t) + y*cos(t)))
graph3d(dat, frame = ~t, tooltip = FALSE)

# scatterplot ####
dat <- iris
dat$style <- I(lapply(iris$Species, function(x){

switch(as.character(x),
setosa = list(fill="red", stroke="#'000"),
versicolor = list(fill="green", stroke="#'000"),
virginica = list(fill="blue", stroke="#'000"))

}))
graph3d(dat, x = ~Sepal.Length, y = ~Sepal.Width, z = ~Petal.Length,

style = ~style, type = "dot-color", showLegend = FALSE)

# line ####
t_ <- seq(0, 2*pi, length.out = 200)
dat <- data.frame(

x = cos(t_),
y = sin(t_),
z = 2 * cos(3*t_)

)
graph3d(dat, type = "line", dataColor = list(strokeWidth = 5, stroke = "red"),

verticalRatio = 1)

# a complex function ####
dat <- expand.grid(

x = seq(-1, 1, length.out = 100),
y = seq(-1, 1, length.out = 100)

)
dat <- transform(dat, sine = sin(x + 1i*y))
dat <- transform(dat, modulus = Mod(sine), phase = Arg(sine))
graph3d(dat, z = ~modulus, style = ~phase, type = "dot-color",

legendLabel = "phase")

graph3d-imports Objects imported from other packages



graph3d-shiny 7

Description

These objects are imported from other packages. Follow the links to their documentation: JS,
saveWidget.

graph3d-shiny Shiny bindings for graph3d

Description

Output and render functions for using graph3d within Shiny applications and interactive Rmd doc-
uments.

Usage

graph3dOutput(outputId, width = "100%", height = "400px")

renderGraph3d(expr, env = parent.frame(), quoted = FALSE)

Arguments

outputId output variable to read from

width, height dimensions, must be valid CSS units (like '100%', '400px', 'auto') or a num-
ber, which will be coerced to a string and have 'px' appended

expr an expression that generates a graph3d HTML widget

env the environment in which to evaluate expr

quoted logical, whether expr is a quoted expression (with quote()); this is useful if
you want to save an expression in a variable

Examples

if(interactive()) {

# 'surfaceColors' example ####

library(shiny)
library(viridisLite)
library(graph3d)

x <- y <- seq(-10, 10, length.out = 100)
dat <- expand.grid(x = x, y = y)
f <- function(x, y){

r <- sqrt(x^2+y^2)
10 * ifelse(r == 0, 1, sin(r)/r)

}
dat <- transform(dat, z = f(x, y))

ui <- fluidPage(



8 graph3d-shiny

br(),
fluidRow(

column(
width = 2,
radioButtons("colors", "Colors",

c("viridis", "inferno", "magma", "plasma", "cividis"))
),
column(

width = 10,
graph3dOutput("mygraph", height = "550px")

)
)

)

server <- function(input, output, session){

Colors <- reactive({
colors <- switch(

input$colors,
viridis = viridis(5),
inferno = inferno(5),
magma = magma(5),
plasma = plasma(5),
cividis = cividis(5)

)
substring(colors, 1L, 7L)

})

output[["mygraph"]] <- renderGraph3d({
graph3d(dat, surfaceColors = Colors(), showLegend = FALSE)

})

}

shinyApp(ui, server)

}

if(interactive()) {

# 'onclick' example ####

library(shiny)
library(graph3d)

dat <- data.frame(x = rnorm(30), y = rnorm(30), z = rnorm(30))

onclick <- c(
"function(point){",
" Shiny.setInputValue('point', point);",
"}"

)



graph3d-shiny 9

ui <- fluidPage(
br(),
fluidRow(
column(

width = 4,
h4("You clicked:"),
verbatimTextOutput("pointClicked")

),
column(

width = 8,
graph3dOutput("mygraph", height = "550px")

)
)

)

server <- function(input, output, session){

output[["mygraph"]] <- renderGraph3d({
graph3d(dat, type = "dot", width = "550px", height = "550px",

onclick = JS(onclick), tooltip = FALSE)
})

output[["pointClicked"]] <- renderPrint({
input[["point"]]

})

}

shinyApp(ui, server)

}



Index

graph3d, 2, 7
graph3d-imports, 6
graph3d-shiny, 7
graph3dOutput (graph3d-shiny), 7

JS, 7
JS (graph3d-imports), 6

renderGraph3d (graph3d-shiny), 7

saveWidget, 7
saveWidget (graph3d-imports), 6

10


	graph3d
	graph3d-imports
	graph3d-shiny
	Index

