--- title: "Get started with 'gyro'" output: rmarkdown::html_vignette: css: vignette.css vignette: > %\VignetteIndexEntry{Get started with 'gyro'} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(gyro) ``` About three years ago, I wrote an [article on my blog](https://laustep.github.io/stlahblog/posts/hyperbolicPolyhedra.html) about Ungar's approach to hyperbolic geometry, and how it can be used to draw some hyperbolic polyhedra in R, using the **rgl** package. I invite you to take a look at this article. Now I've implemented these ideas in the **gyro** package. Maybe you know there are several models of hyperbolic geometry; **gyro** deals with the hyperboloid model (or Minkowski model) and the Poincaré model. The main functions of the **gyro** package dealing with 3D polyhedra are: - `gyrotube`, to draw a tubular hyperbolic segment (if you don't want a tube, use `gyrosegment` instead); - `gyrotriangle`, to draw a filled hyperbolic triangle in the 3D space; - `plotGyrohull3d`, to draw the hyperbolic convex hull of a set of 3D points. You can run `gyrodemos()` to get some examples of code which draw some hyperbolic polyhedra. If you are looking for other polyhedra, you can go to the **Visual Polyhedra** page of the [dmccooey](http://dmccooey.com/polyhedra/index.html) website. Here you will find the Cartesian coordinates of the vertices of many polyhedra. If the polyhedron is convex (in the Euclidean space), use `plotGyrohull3d` to quickly draw it. Otherwise you need to know the faces of the polyhedron, and they are given on the [dmccooey](http://dmccooey.com/polyhedra/index.html) website. From the faces you can derive the edges. See `gyrodemos()` for some examples. The [eusebeia](https://www.qfbox.info/4d/index) website is another resource to find the Cartesian coordinates of the vertices of some polyhedra. Finally you can also use the R package [Rpolyhedra](https://CRAN.R-project.org/package=Rpolyhedra). The **gyro** package also offers the `tiling` function to plot hyperbolic tilings of the Poincaré disk.