
Package: qsplines (via r-universe)
August 28, 2024

Type Package
Title Quaternions Splines
Version 1.0.1
Description Provides routines to create some quaternions splines:

Barry-Goldman algorithm, De Casteljau algorithm, and
Kochanek-Bartels algorithm. The implementations are based on
the Python library 'splines'. Quaternions splines allow to
construct spherical curves. References: Barry and Goldman
<doi:10.1145/54852.378511>, Kochanek and Bartels
<doi:10.1145/800031.808575>.

License GPL-3

URL https://github.com/stla/qsplines

BugReports https://github.com/stla/qsplines/issues

LinkingTo Rcpp, BH
Depends onion
Imports shiny, utils, Rcpp
Suggests rgl
Encoding UTF-8
RoxygenNote 7.2.3
Repository https://stla.r-universe.dev
RemoteUrl https://github.com/stla/qsplines
RemoteRef HEAD
RemoteSha 6e1b2f703c76d6383419a3695719e182155165a6

Contents
BarryGoldman . 2
DeCasteljau . 3
interpolateTimes . 4
KochanekBartels . 5
quaternionFromTo . 7
shinyKBS . 8

1

https://doi.org/10.1145/54852.378511
https://doi.org/10.1145/800031.808575
https://github.com/stla/qsplines
https://github.com/stla/qsplines/issues

2 BarryGoldman

Index 9

BarryGoldman Barry-Goldman quaternions spline

Description

Constructs a spline of unit quaternions by the Barry-Goldman method.

Usage

BarryGoldman(keyRotors, keyTimes = NULL, n_intertimes, times)

Arguments

keyRotors a vector of unit quaternions (rotors) to be interpolated; it is automatically ap-
pended with the first one to have a closed spline

keyTimes the times corresponding to the key rotors; must be an increasing vector of length
length(keyRotors)+1; if NULL, it is set to c(1, 2, ..., length(keyRotors)+1)

n_intertimes a positive integer used to linearly interpolate the times given in keyTimes in
order that there are n_intertimes - 1 between two key times (so one gets the
key times if n_intertimes = 1); if this argument is given, then it has precedence
over times

times the interpolating times, they must lie within the range of keyTimes; ignored if
n_intertimes is given

Value

A vector of unit quaternions with the same length as times.

Note

The function does not check whether the quaternions given in keyRotors are unit quaternions.

Examples

library(qsplines)
Using a Barry-Goldman quaternions spline to construct
a spherical curve interpolating some key points on
the sphere of radius 5.

helper function: spherical to Cartesian coordinates
sph2cart <- function(rho, theta, phi){

return(c(
rho * cos(theta) * sin(phi),
rho * sin(theta) * sin(phi),
rho * cos(phi)

))
}

DeCasteljau 3

construction of the key points on the sphere
keyPoints <- matrix(nrow = 0L, ncol = 3L)
theta_ <- seq(0, 2*pi, length.out = 9L)[-1L]
phi <- 1
for(theta in theta_){

keyPoints <- rbind(keyPoints, sph2cart(5, theta, phi))
phi = pi - phi

}
n_keyPoints <- nrow(keyPoints)

construction of the key rotors; the first key rotor is the
identity quaternion and rotor i sends the first key point
to the key point i
keyRotors <- quaternion(length.out = n_keyPoints)
rotor <- keyRotors[1L] <- H1
for(i in seq_len(n_keyPoints - 1L)){

keyRotors[i+1L] <- rotor <-
quaternionFromTo(

keyPoints[i,]/5, keyPoints[i+1L,]/5
) * rotor

}

Barry-Goldman quaternions spline
rotors <- BarryGoldman(keyRotors, n_intertimes = 10L)

construction of the interpolating points on the sphere
points <- matrix(nrow = 0L, ncol = 3L)
keyPoint1 <- rbind(keyPoints[1L,])
for(i in seq_along(rotors)){

points <- rbind(points, rotate(keyPoint1, rotors[i]))
}

visualize the result with the 'rgl' package
library(rgl)
spheres3d(0, 0, 0, radius = 5, color = "lightgreen")
spheres3d(points, radius = 0.2, color = "midnightblue")
spheres3d(keyPoints, radius = 0.25, color = "red")

DeCasteljau Spline using the De Casteljau algorithm

Description

Constructs a quaternions spline using the De Casteljau algorithm.

Usage

DeCasteljau(
segments,

4 interpolateTimes

keyTimes = NULL,
n_intertimes,
times,
constantSpeed = FALSE

)

Arguments

segments a list of vectors of unit quaternions; each segment must contain at least two
quaternions

keyTimes the times corresponding to the segment boundaries, an increasing vector of
length length(segments)+1; if NULL, it is set to 1, 2, ..., length(segments)+1

n_intertimes a positive integer used to linearly interpolate the times given in keyTimes in or-
der that there are n_intertimes - 1 between two key times (so one gets the key
times if n_intertimes = 1); this parameter must be given if constantSpeed=TRUE
and if it is given when constantSpeed=FALSE, then it has precedence over
times

times the interpolating times, they must lie within the range of keyTimes; ignored if
constantSpeed=TRUE or if n_intertimes is given

constantSpeed Boolean, whether to re-parameterize the spline to have constant speed; in this
case, "times" is ignored and a function is returned, with an attribute "times",
the vector of new times corresponding to the key rotors

Value

A vector of quaternions whose length is the number of interpolating times.

Note

This algorithm is rather for internal purpose. It serves for example as a base for the Konachek-
Bartels algorithm.

interpolateTimes Interpolate a vector of times

Description

Linearly interpolate an increasing vector of times. This is useful to deal with the quaternions splines.

Usage

interpolateTimes(times, n, last = TRUE)

KochanekBartels 5

Arguments

times increasing vector of times

n integer, controls the number of interpolations: there will be n-1 time values
between two consecutive original times

last Boolean, whether to include or exclude the last element

Value

A vector, a refinement of the times vector.

Examples

library(qsplines)
interpolateTimes(1:4, n = 3)
interpolateTimes(c(1, 2, 4), n = 3)

KochanekBartels Kochanek-Bartels quaternions spline

Description

Constructs a quaternions spline by the Kochanek-Bartels algorithm.

Usage

KochanekBartels(
keyRotors,
keyTimes = NULL,
tcb = c(0, 0, 0),
times,
n_intertimes,
endcondition = "natural",
constantSpeed = FALSE

)

Arguments

keyRotors a vector of unit quaternions (rotors) to be interpolated

keyTimes the times corresponding to the key rotors; must be an increasing vector of the
same length a keyRotors if endcondition = "natural" or of length one more
than number of key rotors if endcondition = "closed"

tcb a vector of three numbers respectively corresponding to tension, continuity and
bias

times the times of interpolation; each time must lie within the range of the key times;
this parameter can be missing if keyTimes is NULL and n_intertimes is not
missing, and it is ignored if constantSpeed=TRUE

6 KochanekBartels

n_intertimes if given, this argument has precedence over times; keyTimes can be NULL and
times is constructed by linearly interpolating the key times such that there are
n_intertimes - 1 between two key times (so the times are the key times if
n_intertimes = 1)

endcondition start/end conditions, can be "closed" or "natural"

constantSpeed Boolean, whether to re-parameterize the spline to have constant speed; in this
case, "times" is ignored and you must set the interpolating times with the help
of n_intertimes

Value

A vector of quaternions having the same length as the times vector.

Examples

library(qsplines)
Using a Kochanek-Bartels quaternions spline to construct
a spherical curve interpolating some key points on the
sphere of radius 5

helper function: spherical to Cartesian coordinates
sph2cart <- function(rho, theta, phi){

return(c(
rho * cos(theta) * sin(phi),
rho * sin(theta) * sin(phi),
rho * cos(phi)

))
}

construction of the key points on the sphere
keyPoints <- matrix(nrow = 0L, ncol = 3L)
theta_ <- seq(0, 2*pi, length.out = 9L)[-1L]
phi <- 1.3
for(theta in theta_){

keyPoints <- rbind(keyPoints, sph2cart(5, theta, phi))
phi = pi - phi

}
n_keyPoints <- nrow(keyPoints)

construction of the key rotors; the first key rotor
is the identity quaternion and rotor i sends the
first key point to the i-th key point
keyRotors <- quaternion(length.out = n_keyPoints)
rotor <- keyRotors[1L] <- H1
for(i in seq_len(n_keyPoints - 1L)){

keyRotors[i+1L] <- rotor <-
quaternionFromTo(

keyPoints[i,]/5, keyPoints[i+1L,]/5
) * rotor

}

quaternionFromTo 7

Kochanek-Bartels quaternions spline
rotors <- KochanekBartels(

keyRotors, n_intertimes = 25L,
endcondition = "closed", tcb = c(-1, 5, 0)

)

construction of the interpolating points on the sphere
points <- matrix(nrow = 0L, ncol = 3L)
keyPoint1 <- rbind(keyPoints[1L,])
for(i in seq_along(rotors)){

points <- rbind(points, rotate(keyPoint1, rotors[i]))
}

visualize the result with the 'rgl' package
library(rgl)
spheres3d(0, 0, 0, radius = 5, color = "lightgreen")
spheres3d(points, radius = 0.2, color = "midnightblue")
spheres3d(keyPoints, radius = 0.25, color = "red")

quaternionFromTo Quaternion between two vectors

Description

Get a unit quaternion whose corresponding rotation sends u to v; the vectors u and v must be
normalized.

Usage

quaternionFromTo(u, v)

Arguments

u, v two unit 3D vectors

Value

A unit quaternion whose corresponding rotation transforms u to v.

Examples

library(qsplines)
u <- c(1, 1, 1) / sqrt(3)
v <- c(1, 0, 0)
q <- quaternionFromTo(u, v)
rotate(rbind(u), q) # this should be v

8 shinyKBS

shinyKBS Shiny demonstration of Kochanek-Bartels spline

Description

Run a Shiny app which demonstrates the Kochanek-Bartels spline.

Usage

shinyKBS()

Value

No value returned.

Index

BarryGoldman, 2

DeCasteljau, 3

interpolateTimes, 4

KochanekBartels, 5
Konachek-Bartels, 4

quaternionFromTo, 7

shinyKBS, 8

9

	BarryGoldman
	DeCasteljau
	interpolateTimes
	KochanekBartels
	quaternionFromTo
	shinyKBS
	Index

